๐Ÿ’ก WIDA/DACON ๋ถ„๋ฅ˜-ํšŒ๊ท€ 43

[DACON/์กฐ์•„์˜] ์ฒœ์ฒด ๋ถ„๋ฅ˜ ๊ฒฝ์ง„๋Œ€ํšŒ ๋„๋ฉ”์ธ ๋” ๋œฏ์–ด๋ณด๊ธฐ: Type

์ง€๊ตฌ๊ณผํ•™์‹œ๊ฐ„์— ๋ฐฐ์› ๋˜ ํ•ญ์„ฑ ์ง€์‹ ์›์‹œ์„ฑ์˜ ์งˆ๋Ÿ‰์— ๋”ฐ๋ผ ํ•ญ์„ฑ(๋ณ„)์˜ ์ƒ์•  ์ฃผ๊ธฐ๊ฐ€ ๋‹ฌ๋ผ์ง ์›์‹œ์„ฑ์ด ์ž ์‹œ๋™์•ˆ์€ ์—๋„ˆ์ง€๋ฅผ ์ƒ์‚ฐํ•˜๋‚˜ ์ˆ˜์†Œํ•ต์œตํ•ฉ์„ ํ• ์ •๋„๋กœ ์ค‘๋ ฅ์ด ๊ฐ•ํ•˜๊ณ  ์˜จ๋„์™€ ์••๋ ฅ์ด ์ถฉ๋ถ„ํžˆ ๋†’์ง€ ์•Š์€ ๊ฒฝ์šฐ ๊ฐˆ์ƒ‰์™œ์„ฑ, ์ ์ƒ‰์™œ์„ฑ์˜ ํ˜•ํƒœ๋กœ ๋‚จ๊ฒŒ๋จ ๋ฐฑ์ƒ‰์™œ์„ฑ์€ ๋ณ„๋“ค์ด ์—ฐ์†Œ๋ฅผ ๋ชจ๋‘ ๋๋‚ธ ํ›„ ๋”์ด์ƒ ์—๋„ˆ์ง€๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์—†๋Š” ์ƒํƒœ๋กœ ๊ต‰์žฅํžˆ ๊ณ ์˜จ์œผ๋กœ ๋‚จ์•„์žˆ์–ด ํฐ์ƒ‰์„ ๋” GALAXY ์ฃผ ํ‘œ๋ณธ ์€ํ•˜ QSO ํ€˜์ด์‚ฌ ๋งค์šฐ ๋ฐ์€ ๋น›์„ ๋ฐฉ์ถœํ•˜๋‚˜ ๊ต‰์žฅํžˆ ๋จผ ์€ํ•˜์˜ ์ค‘์‹ฌ์— ์œ„์น˜ ์ดˆ๊ฑฐ๋Œ€์งˆ๋Ÿ‰ ๋ธ”๋ž™ํ™€ ์ฃผ์œ„์˜ ๊ฐ•๋ ฅํ•œ ์—๋„ˆ์ง€ ๋ฐฉ์ถœ๊ณผ ์—ฐ๊ด€๋˜์–ด์žˆ์œผ๋ฉฐ, ์šฐ์ฃผ์˜ ํŒฝ์ฐฝ๊ณผ ๊ด€๋ จ๋œ ์ค‘์š”ํ•œ ์ฒœ์ฒด ์ค‘ ํ•˜๋‚˜ REDDEN_STD ์ผ๋ฐ˜์ ์ธ ์ ์ƒ‰์„ฑ reddening standard star ๋ณ„์˜ ์ŠคํŽ™ํŠธ๋Ÿผ ๊ด€์ธก ์ค‘ ๋Œ€๊ธฐ ํก์ˆ˜ ๋ฐ ์‚ฐ๋ž€์ด ๊ฑฐ์น ๊ฒŒ ์ผ์–ด๋‚˜๋Š” ๋ณ„์„ ์˜๋ฏธํ•จ ๋Œ€๊ธฐํก์ˆ˜ ํšจ๊ณผ..

[DACON/๊น€๋ฏผํ˜œ] ์ฒœ์ฒด ๋ถ„๋ฅ˜ ๊ฒฝ์ง„๋Œ€ํšŒ

๋„ˆ๋ฌด ๋Šฆ๊ฒŒ ์˜ฌ๋ ค ์ฃ„์†กํ•ฉ๋‹ˆ๋‹ค์•„!! ๊ฐœ์š” ์ด๋ฒˆ ํ”„๋กœ์ ํŠธ์— ๋Œ€ํ•œ ๊ฐ„๋‹จํ•œ ๊ฐœ์š”๋ฅผ ์„ค๋ช…ํ•˜์ž๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒœ์ฒด ๋ฐ์ดํ„ฐ์ธ ‘์Šฌ๋ก  ๋””์ง€ํ„ธ ์ฒœ์ฒด ๊ด€์ธก(SDSS)’ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ธก์ •๋œ 21๊ฐœ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ด๋ฏธ ์ •์˜๋œ 19๊ฐœ์˜ ์ฒœ์ฒด ์œ ํ˜•์„ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋Œ€ํšŒ์ด๋‹ค. Data ํ†บ์•„๋ณด๊ธฐ ๋Œ€ํšŒ์— ์˜ฌ๋ผ์˜จ ๋ฐ์ดํ„ฐ์…‹์„ ์‚ดํŽด๋ดค์„ ๋•Œ ๋“ฑ์žฅํ•˜๋Š” ์ฒœ์ฒด๋“ค์˜ ์ข…๋ฅ˜์— ๋Œ€ํ•ด ์ •๋ฆฌํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ๋”๋ณด๊ธฐ โ˜๐Ÿป ์ฒœ์ฒด ์ข…๋ฅ˜ QSO- ํ€˜์ด์‚ฌ STAR_RED_DWARF - ์ ์ƒ‰์™œ์„ฑ STAR_BHB - ์ˆ˜ํ‰๊ฑฐ์—ด์„ฑ STAR_CATY_VAR - ๊ฒฉ๋ณ€๋ณ€๊ด‘์„ฑ SERENDIP_RED, SERENDIP_BLUE, SERENDIP_DISTANT : ํ•ญ์„ฑ ๊ตฌ์—ญ ์™ธ๋ถ€์— ๋†“์ธ ์ฒœ์ฒด SERENDIPITY_FIRST : ์ฒซ๋ฒˆ์งธ ๊ด€์ธก์—์„œ ํ€˜์ด์‚ฌ๋กœ ๋ถ„๋ฅ˜๋˜์—ˆ์ง€๋งŒ, ์ด์–ด์ง„ ๊ด€..

[DACON/์กฐ์•„์˜] ์ฒœ์ฒด ๋ถ„๋ฅ˜ ๊ฒฝ์ง„๋Œ€ํšŒ

๊ณผ์ • 1. EDA ๋ฐ ์ „์ฒ˜๋ฆฌ 2. ๋ชจ๋ธ๋ง ๋ฐ ๊ฒฐ๊ณผ 3. ์ธ์‚ฌ์ดํŠธ ๋„์ถœ 1. EDA ๋ฐ ์ „์ฒ˜๋ฆฌ Training set์˜ ๊ฒฝ์šฐ ์ด 23๊ฐœ์˜ column์œผ๋กœ ์ด๋ฃจ์–ด์ ธ ์žˆ์œผ๋ฉฐ ๋ฐ์ดํ„ฐ๋Š” ์•ฝ 20๋งŒ๊ฑด์ด ์กด์žฌํ•œ๋‹ค. Test set์˜ ๊ฒฝ์šฐ ์ด 22๊ฐœ์˜ column์œผ๋กœ Training set๊ณผ๋Š” ๋‹ค๋ฅด๊ฒŒ 'type' column์ด ์กด์žฌํ•˜์ง€ ์•Š๋Š”๋‹ค. ์ด๋Š” Test set์„ ์ด์šฉํ•ด ์˜ˆ์ธก ํ›„ submission ํŒŒ์ผ์„ ๋งŒ๋“ค์–ด ์ œ์ถœํ•˜๋Š” ์šฉ๋„์ด๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. Submission file์˜ ๊ฒฝ์šฐ column์€ test set์˜ ๋ฐ์ดํ„ฐ id, ๋ณ„๋“ค์˜ type๋“ค์ด ์กด์žฌํ•œ๋‹ค. ๊ฐ type์„ ์–ด๋Š์ •๋„์˜ ํ™•๋ฅ ๋กœ ์˜ˆ์ธกํ–ˆ๋Š”์ง€ ๊ธฐ๋ก ํ›„ ์ œ์ถœํ•˜๋Š” ํ˜•ํƒœ์ด๋‹ค. ํ‰๊ฐ€ ๋ฐฉ๋ฒ•์€ log_loss๋ฅผ ์ด์šฉํ•˜๋ผ๊ณ  ํ–ˆ์œผ๋‚˜, ์ผ๋‹จ์€ ์ •ํ™•๋„์™€ ์ „๋ฐ˜์ ์ธ ์˜ˆ์ธก ํ™•๋ฅ  ์œ„์ฃผ๋กœ ..

[DACON/์ตœ๋‹ค์˜ˆ] ํ”„๋กœ์ ํŠธ ์—์„ธ์ด

๋ชฉํ‘œ ์Šฌ๋ก  ๋””์ง€ํ„ธ ์ฒœ์ฒด ๊ด€์ธก ๋ฐ์ดํ„ฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์ฒœ์ฒด์˜ ํƒ€์ž…์„ ๋ถ„๋ฅ˜ํ•ด๋‚ด๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด์„œ train data๋กœ ํ•™์Šต์„ ํ•˜๊ณ  test data๋กœ ํ™•์ธ์„ ํ•˜๋Š” ๊ณผ์ •์„ ๊ฑฐ์นœ๋‹ค. EDA (Exploratory Data Analysis : ํƒ์ƒ‰์  ๋ฐ์ดํ„ฐ ๋ถ„์„) ์ˆ˜์ง‘ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ค์–‘ํ•œ ๊ฐ๋„์—์„œ ๊ด€์ฐฐํ•˜๊ณ  ์ดํ•ดํ•˜๋Š” ๊ณผ์ •์ด๋‹ค. # ํ•„์š”ํ•œ ํŒจํ‚ค์ง€ import import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import cross_val_score, train_test_split from sklearn.neighbors import KNeighborsClassifier from sk..

[DACON/๊น€๊ฒฝ์€] ํ”„๋กœ์ ํŠธ ์—์„ธ์ด

EDA (Exploratory Data Analysis) ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns ๋ฐ์ดํ„ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ train = pd.read_csv("C:/Users/twink/Documents/์นด์นด์˜คํ†ก ๋ฐ›์€ ํŒŒ์ผ/train.csv") test = pd.read_csv("C:/Users/twink/Desktop/test.csv") sub = pd.read_csv("C:/Users/twink/Desktop/sample_submission.csv") ๋ฐ์ดํ„ฐ๋ฅผ ๋ถˆ๋Ÿฌ์™€์„œ ์–ด๋–ค ํ˜•ํƒœ์˜ ๋ฐ์ดํ„ฐ๊ฐ€ ์žˆ๋Š”์ง€ ์‚ดํŽด๋ณด๊ธฐ shape ํ™•์ธํ•˜๊ธฐ #ํ–‰๊ณผ ์—ด์˜ ๊ฐœ์ˆ˜ print(train...

[DACON/๊น€์„ธ์—ฐ] ํ”„๋กœ์ ํŠธ ์—์„ธ์ด

๋…ธ์…˜์„ ํ‹ฐ์Šคํ† ๋ฆฌ๋กœ ๋ณต๋ถ™ํ•˜์—ฌ ์—…๋กœ๋“œํ•˜๋‹ˆ ๋‹ค ๊นจ์ ธ์„œ ํ•˜๋‚˜์”ฉ ์บก์ณํ•ด์„œ ์—…๋กœ๋“œํ•ฉ๋‹ˆ๋‹ค. https://faithful-wolf-df8.notion.site/DACON-3d9990b4115a45a283849c52010efd84

[DACON/๊น€๊ทœ๋ฆฌ] ํ”„๋กœ์ ํŠธ ์—์„ธ์ด

1. EDA & ์ „์ฒ˜๋ฆฌ๋“ค์–ด๊ฐ€๋ฉฐ์ฒœ์ฒด ์œ ํ˜• ๋ถ„๋ฅ˜ ๋Œ€ํšŒ๋ฐฐ๊ฒฝ ์•ˆ๋…•ํ•˜์„ธ์š” ์—ฌ๋Ÿฌ๋ถ„! ์ฒœ์ฒด ์œ ํ˜• ๋ถ„๋ฅ˜ ๋Œ€ํšŒ์— ์˜ค์‹  ๊ฒƒ์„ ํ™˜์˜ํ•ฉ๋‹ˆ๋‹ค. ์ตœ๊ทผ ์ธ๋ฅ˜์—๊ฒŒ ๋‹ค๊ฐ€์˜จ ๋น…๋ฐ์ดํ„ฐ๋ผ๋Š” ๋‹จ์–ด๋Š” ์šฐ์ฃผ์™€ ์ฒœ๋ฌธํ•™์—๊ฒŒ ๋‚ฏ์„ค์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ์ฐฐ๋‚˜์˜ ์ˆœ๊ฐ„์—๋„ ์šฐ์ฃผ๋Š” ์ฒœ๋ฌธํ•™์ ์ธ ์–‘์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์‚ฐํ•ด์™”๊ณ , ์˜ค๋ž˜ ์ „๋ถ€ํ„ฐ ์ฒœ๋ฌธํ•™์ž๋“ค์€ ์šฐ์ฃผ๋ฅผ ๊ด€์ธกํ–ˆ์œผ๋ฉฐ ๊ทธ ๋ฐฉ๋Œ€ํ•จ์— ๋น„๋ก€ํ•˜๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ ๋ฐ ๋ถ„์„ํ–ˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค. ์Šฌ๋ก  ๋””์ง€ํ„ธ ์ฒœ์ฒด ๊ด€์ธก(Sloan Digital Sky Survey: ์ดํ•˜ SDSS)๋Š” ์„ธ๊ณ„์  ์ฒœ์ฒด ๊ด€์ธก ํ”„๋กœ์ ํŠธ๋กœ, ์šฐ์ฃผ์— ๋Œ€ํ•œ ์ฒœ๋ฌธํ•™์ ์ธ ๊ทœ๋ชจ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๊ณณ์—์„œ ์ˆ˜์ง‘ํ•œ ๋ฐ์ดํ„ฐ๋Š” ์•ฝ 6,000๊ฐœ ๋…ผ๋ฌธ์— ์‚ฌ์šฉ๋˜์—ˆ๊ณ , 25๋งŒ ํšŒ ์ด์ƒ ์ธ์šฉ๋˜์—ˆ์„ ์ •๋„๋กœ ์ฒœ๋ฌธํ•™์— ํฐ ๊ธฐ์—ฌ๋ฅผ ํ–ˆ์Šต๋‹ˆ๋‹ค. ์ ์  ๊ฑฐ๋Œ€ํ•ด์ง€๋Š” ๊ทœ๋ชจ์— ๋”ฐ๋ผ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ์—๋Š” ๋จธ์‹ ..

[DACON/์ฐธ๊ณ ์ž๋ฃŒ] ์•™์ƒ๋ธ” ๋ชจ๋ธ

1. ๊ฐœ์š” 1) ์•™์ƒ๋ธ”์ด๋ž€? ์—ฌ๋Ÿฌ๊ฐœ์˜ classifier๋ฅผ ์ƒ์„ฑํ•˜๊ณ  ๊ฐ classifier๊ฐ€ ์˜ˆ์ธกํ•œ ๊ฐ’๋“ค์„ ๊ฒฐํ•ฉํ•จ์œผ๋กœ์จ ์ •ํ™•ํ•œ ์ตœ์ข… ์˜ˆ์ธก ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•˜๋Š” ๊ธฐ๋ฒ• ๋Œ€๋ถ€๋ถ„์˜ ์ •ํ˜•๋ฐ์ดํ„ฐ ๋ถ„๋ฅ˜ ์‹œ ์•™์ƒ๋ธ” ๋ชจ๋ธ๋“ค์ด ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋ƒ„ ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ, ๊ทธ๋ž˜๋””์–ธํŠธ ๋ถ€์ŠคํŒ… ๋“ฑ์˜ ๋ชจ๋ธ๋“ค์ด ์žˆ์Œ 2) ํ•™์Šต ์œ ํ˜• ํˆฌํ‘œ๋ฅผ ํ†ตํ•ด ์ตœ์ข… ์˜ˆ์ธก ๊ฒฐ๊ณผ ๊ฒฐ์ • ๋ณดํŒ… ๋ฐฐ๊น… ์—ฌ๋Ÿฌ๊ฐœ์˜ ๋ถ„๋ฅ˜๊ธฐ๊ฐ€ ์ˆœ์ฐจ์ ์œผ๋กœ ์‚ญ์Šต ์ˆ˜ํ–‰, ์˜ˆ์ธก์ด ํ‹€๋ฆฐ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด์„œ๋Š” ๊ฐ€์ค‘์น˜ ๋ถ€์—ฌ ๋ถ€์ŠคํŒ… ์—ฌ๋Ÿฌ๊ฐ€์ง€ ๋‹ค๋ฅธ ๋ชจ๋ธ๋“ค์˜ ์˜ˆ์ธก ๊ฒฐ๊ณผ๊ฐ’์„ ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ ๋งŒ๋“ค๊ณ , ๋‹ค๋ฅธ ๋ชจ๋ธ(๋ฉ”ํƒ€๋ชจ๋ธ)์— ์ด๋ฅผ ์žฌํ•™์Šต์‹œ์ผœ ๊ฒฐ๊ณผ๋ฅผ ์˜ˆ์ธก ์Šคํƒœํ‚น ์ด ์™ธ์—๋„ ๋‹ค์–‘ํ•œ ์œ ํ˜•์ด ์žˆ์Œ 2. ์•™์ƒ๋ธ” ํ•™์Šต ์œ ํ˜• 1) ๋ณดํŒ… ์ผ๋ฐ˜์ ์œผ๋กœ ์„œ๋กœ ๋‹ค๋ฅธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐ€์ง„ classifier๋ฅผ ๊ฒฐํ•ฉํ•จ ๋ณดํŒ… ์œ ํ˜• ํ•˜๋“œ๋ณดํŒ… ๋‹ค์ˆ˜๊ฒฐ์˜ ์›..

[DACON/์ฐธ๊ณ ์ž๋ฃŒ] SVM ์ฐธ๊ณ ์ž๋ฃŒ

๋˜ ๋‹ค๋ฅธ ๋ชจ๋ธ, SVM from sklearn import svm from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split import pandas as pd # svm ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ 7๊ฐ€์ง€ ๋ชจ๋ธ ์ค‘ svm.SVC๋กœ ๋ถˆ๋Ÿฌ์˜ด svm_clf = svm.SVC(kernel="linear") # training dataset ๋ถˆ๋Ÿฌ์˜ค๊ธฐ train_data = pd.read_csv("C:/Users/1ayou/PycharmProjects/dacon_astronomy/dataset/train.csv") X = train_data.iloc[:, 2:] y = train_data.iloc[:, 1] X_tr..

[DACON/์ตœ๋‹ค์˜ˆ] ํŒŒ์ด์ฌ์„ ์ด์šฉํ•œ EDA

EDA Exploratory Data Analysis : ํƒ์ƒ‰์  ๋ฐ์ดํ„ฐ ๋ถ„์„ ์ˆ˜์ง‘ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ค์–‘ํ•œ ๊ฐ๋„์—์„œ ๊ด€์ฐฐํ•˜๊ณ  ์ดํ•ดํ•˜๋Š” ๊ณผ์ • ํ•„์š”ํ•œ ์ด์œ  ๋ฐ์ดํ„ฐ์˜ ๋ถ„ํฌ ๋ฐ ๊ฐ’์„ ๊ฒ€ํ†  → ๋ฐ์ดํ„ฐ๊ฐ€ ํ‘œํ˜„ํ•˜๋Š” ํ˜„์ƒ์„ ๋” ์ž˜ ์ดํ•ดํ•˜๊ณ  ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์ž ์žฌ์ ์ธ ๋ฌธ์ œ ๋ฐœ๊ฒฌ ๊ฐ€๋Šฅ ๋ณธ๊ฒฉ์ ์ธ ๋ถ„์„์— ๋“ค์–ด๊ฐ€๊ธฐ ์ „, ๋ฐ์ดํ„ฐ์˜ ์ˆ˜์ง‘ ๊ฒฐ์ • ๊ฐ€๋Šฅ ๋‹ค์–‘ํ•œ ๊ฐ๋„์—์„œ ์‚ดํŽด๋ณด๋Š” ๊ณผ์ • → ๋ฌธ์ œ ์ •์˜ ๋‹จ๊ณ„์—์„œ ๋ฐœ๊ฒฌํ•˜์ง€ ๋ชปํ•œ ๋‹ค์–‘ํ•œ ํŒจํ„ด์„ ๋ฐœ๊ฒฌํ•˜๊ณ  ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ฐ€์„ค์„ ์ˆ˜์ •ํ•  ์ˆ˜ ์žˆ์Œ ๊ณผ์ • ๋ถ„์„์˜ ๋ชฉ์ , ๋ณ€์ˆ˜ ํ™•์ธ ๊ฐœ๋ณ„ ๋ณ€์ˆ˜์˜ ์ด๋ฆ„์ด๋‚˜ ์„ค๋ช… ํ™•์ธ ๋ฐ์ดํ„ฐ์— ๋ฌธ์ œ๊ฐ€ ์žˆ๋Š”์ง€ ์ „์ฒด์ ์œผ๋กœ ์‚ดํŽด๋ณด๊ธฐ head๋‚˜ tail ์ด์ƒ์น˜, ๊ฒฐ์ธก์น˜ ํ™•์ธ ๋“ฑ ๋‹ค์–‘ํ•œ ํƒ์ƒ‰ ๋ฐ์ดํ„ฐ์˜ ๊ฐœ๋ณ„ ์†์„ฑ ๊ฐ’ ๊ด€์ฐฐ๋งŒ์•ฝ ๊ทธ๋ ‡์ง€ ์•Š๋‹ค๋ฉด, ์ด์œ  ์ฐพ๊ธฐ ๊ฐ ์†์„ฑ ๊ฐ’์ด ์˜ˆ์ธกํ•œ ๋ฒ”์œ„์™€ ๋ถ„ํฌ๋ฅผ ๊ฐ–๋Š”์ง€ ํ™•์ธ ..